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Average Output Power of an Incident Wave
Random|y Coupled to a Reflected Wave

JOHN A. MORRISON

Abstract—Two waves traveling in opposite directions in a lossless
waveguide, which are coupled by a random coupling function, are
considered. It is assumed that no power is allowed to enter the
reflected wave at the output end of the guide. The asymptotic value
of the expected output power in the incident wave, when the xnput
power is prescribed, is calculated in the limit of weak coupling and
a long guide. The result is compared with that predicted by Marcuse
on the basis of coupled power equatlons It is found that the two
results are quite close, so long as the expected output power is
greater than half the input power, but past that point Marcuse’s
approximation to the asymptotic value becomes increasingly poorer
as the wavegmde length increases. Some computer simulated re-
sults obtained by Marcuse tend to confirm the validity of the
asymptotic value of the expected output power.

I. INTRODUCTION

N A RECENT PAPER, Marcuse [1] has considered

the problem of two waves traveling in opposite direc-
tions that are coupled by a random coupling function.
He defived equations for the average powers in the two
waves from the coupled wave equations, making use of
perturbation approximations, and some intuitive assump-
tions, it being assumed that the coupling is sufficiently
weak. He found that the form of the coupled power
equations depends on the boundary conditions imposed.
One set of equations describes the situation in which the
output amplitude of the incident wave is prescribed, while
no power is allowed to enter the reflected wave at the out-
put end. Another set of equations describes the situation
in which the input amplitude of the incident wave is pre-
seribed, while again no power is allowed to enter the re-
flected wave at the output end.

The former case, in which the amplitudes of both
waves are prescribed at the output end, is simpler. The
coupled power equations derived by Marcuse agree with
the kinetic power equations derived by Papanicolaou [2],
in the case of weak coupling and a long guide, using a
method developed by Papanicolaou and Keller [3]. In the
latter case, in which the amplitudes of the two waves are
prescribed at opposite ends of the guide, the kinetic power
equations derived by Papanleo]aou are no longer applic-
able.

In this paper we investigate the validity of the coupled
power equations derived by Marcuse in the latter case, in
so far as they predict the expected value of the output
power when the input power is unity. Specifically, we
apply a limit theorem due to Khas’mingskii [4] in order to
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Fig. 1. Average powers (| T |*) (asymptotic) and W.(0) (approxi-
mate), and (| T L y~1 (asymptotic), versus normalized waveguide
length s. Computer simulated results are indicated by circles and
by a triangle.

calculate the asymptotic value of the expected output
power, in the limit of weak coupling and a long guide. The
results are discussed in detail in Section IV, and are de-
picted graphically in Fig. 1. The quantity W,(0) is the
expected value of the output power predicted by Marcuse
[17], while (| T |?) is the asymptotic value. The parameter
s is an appropriate normalization of the waveguide length.
It is seen that W, (0) is quite close to {| T [2), so long as it
exceeds half the input power, but past that point the ap-
proximation to the asymptotic value becomes increasingly
poor, as the waveguide length increases. Also depicted in
Fig. 1 is the asymptotic value of (| T'[~2)~!, which is the
reciprocal of the expected value of the input power, when
the output power is unity.

Comparison is also made with some computer simulated
results obtained by Marcuse [[1], and these tend to con-
firm the validity of the asymptotic value of the expected
output power, derived on the basis of the limit theorem.

II. CourLED WAVE EQUATIONS

Marcuse [1] considers coupled wave equations of the
form

d

ditl = ifa — c(t)b (1)
@

g —1iB2b — c*()a (2)

where the propagation constants $8; and B, are assumed
to be positive, so that losses In the waveguide are ne-
glected. For convenience, we have replaced Marcuse’s
variable z, measuring distance along the guide, by (L — t),
where L is the length of the guide. The wave of amplitude



MORRISON: OUTPUT POWER OF INCIDENT WAVE

a travels in the negative ¢ direction with propagation
constant 8y, while the wave with amplitude b travels in the
positive ¢ direction with propagation constant 8,.

We write the complex coupling coefficient in the form

c(®) = en(t) = e[m(t) + tp(?) ] (3)

where ¢ > 0 is a small parameter, so that the coupling
between the waves is weak. The asterisk in (2) denotes
complex conjugate. We assume that ¢(f) is a zero-mean
wide sense stationary stochastic process, so that

i) =0, j=12 (4)

where { ) denotes ensemble average, and the correlation
functions are

() ne(8) ) = Tu(t — 5),
Note that

Jk = 1.2. (5)

Pfk(_ .() = Pk](g-): ]’k = 1,2

(6)
and that

r() = (s +0)1*(9)) = @s)n*(s — ) = r*(—¢).
’ (@

Marcuse [1] assumes that r(— ¢) = r(¢), which implies
that 7(¢) is real and that T'w(f) = T'u(¢), but we do not
impose this restriction here.

It follows from (1) and (2) that

d

Gla® =150 =0 (®)
which expresses the conservation of power. It is assumed
that the input power is in the wave of amplitude @, and
that no power enters the reflected wave at ¢ = 0, the
output end, so that

b(0) = 0. (9)

Marcuse [1] derived coupled power equations for the
average powers in the two waves

Wa(t) = ([a(®) ),  Wi(®) = (b)) (10)

in two different cases. In one case he assumed that the
output amplitude of the incident wave is prescribed.
In view of (9), there is then an initial value problem
for the system (1) and (2).

Kinetic power equations governing the power transfer
between randomly coupled modes, subject to nonsto-
chastic initial conditions, have been obtained by Pap-
anicolaou [2] in the case of weak coupling and long
guides, using a method developed earlier by him and
Keller [3]. For the particular case of systems (1) and
(2), these equations take the form

AWy

aw,
e _ oW
dt EB(Wa + Wb) dt

(11)

where

b= [ ) (12)
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and

v = 81+ B (13)

In (12), r(¢) is given by (7), and it is known [5] that

8 > 0. Equation (11) is asymptotically valid for ¢ = 7/¢,
where 0 < 7 < 79, and 7 > 0 is fixed, in the limit ¢ — 0.
They are consistent with the coupled power equations
obtained by Marcuse [1] in the case r(— ¢) = r(¢).
The solution of (11), subject to the initial conditions
Wl.(0) = 1, Wy (0) = 0is

Wa(t>
W (t)

%(62‘25‘+1)

%(6252“_1).

I

(14)

In the other case considered by Marcuse [17] the input
amplitude of the incident wave is prescribed, say a(L) = 1,
0 that, in view of (9), there is then a two-point boundary
value problem for systems (1) and (2), rather than an
initial value problem. The kinetic power equations of
Papanicolaou [2] are not applicable in this case. How-
ever, Marcuse [1] does derive some coupled power
equations with the help of some intuitive assumptions,
and they take the form

aw.
dt

AW,
dt

=e&f(We— Ws) = (15)

where § is given by (12), with r({) = r(— ¢) given by
(7). The solution of (15) subjeet to the boundary con-
ditions W.(L) = 1, W3(0) = 0Ois

(1 + eot) et
W) = ) = .
Wa) (1 4 &L) We(®) (1 + &L) (16)
The expected value of the output power is then
‘ 1
W.(0) = U o) (17)

The main purpose of this paper is to investigate the
validity of (17) in the case 0 < L < [j/¢, where € is small.
We do this with the help of a limit theorem due to Khas’-
minskii [4], which is discussed in the next section. How-
ever, we first reformulate the problem in a manner
analogous to that -adopted by Papanicolaou [6] in his
investigation of the mean power transmitted by an elec-
tromagnetic wave normally incident on a randomly
stratified dielectric slab. Thus we let

% M
a(t)

where v is given by (13). Then, from (1)—(3), it follows
that

p(t) = e (18)

B Loty — e ()] (19)
From (9) the initial condition is
p(0) = 0. (20)
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From (8), (9), and (18) it follows that

PR PTOT:
(= 1o® ) = o (21)
Hence, if a(L) = 1, the output power | a(0) |? is
[T]=(1-[p(L) ). (22)

Note also from (21) that in the other case considered
by Marcuse, in which [ a(0) 2 = 1, | p(?) | determines
[a(?) |. Thus, for our purposes, it suffices to consider
(19), subject to the initial condition (20). Although
(19) differs from the Riceati equation that arises in the
slab problem [6], we are able to make use of the main
result for that problem, as will be seen in the next section.

I1I. ArpLicATION OF A LiMmiT THEOREM

For the application of the limit theorem of Khas'-
mingkii [4], it is necessary to separate (19) into real and
imaginary parts. Thus, letting

b(t) = a(t) e
it is found, using (3), that

(23)

g? = e(0® — 1)[m () cos (¢ — ¥t) — na(f) sin (¥ — 1) ]
(24)

Yo LD b sin @ - v
+ na2(t) cos (¥ — vt)].  (25)

The limit theorem applies to vector differential equations
of the form

dy;

J — .
2 Py (26)
where F;{1,t) is a random funection of ¢, with
(Fi(,)) = 0. (27)

It is supposed that the initial value 4(0) is nonstochastic-
In view of (4), systems (24) and (25) are of the ap-
propriate form, with

Y= (Yut) = (28)

(a,:ﬁ) .
Now define
K(s) = <— (49 Fu(L0) (@)

where it is understood that repeated indices are summed,
and

aj/c(‘lbs)t) = <FJ'(1I!;S) Fk(‘lbt) > (30)
For systems (24) and (25), it follows from (5) that
Kes+ 20 2—") ~Ki(s) B
Y Y
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and ‘

2 2
a:ik(‘lbs + = bt l) = au({,8,0). (32)
Y Y
In view of (31) and (32), Khas’minskii’s definitions of
EK; and aj become [4]

2y
B = [ [ Kiwss =0y iras - 33)

2r/y poo
ax =g [ aauss 0 aras ()

We assume that »(f), as given by (3), is a bounded
stochastic process satisfying a certain strong mixing
condition. The reader is referred to Khas'minskii’s paper
for a precise statement of this condition. Let 1(¢) be the
solution of (26) satisfying ¢(0) = 4. Then the limit
theorem states that on the interval 0 < 7 < 79, where 7¢
is an arbitrary positive number, the process 4(7/€)
converges weakly as ¢ — 0 to a Markov process £(7),
which is continuous with probability 1 and whose in-
finitesimal generator is given by :

1
= an(®) 7o a&ag + Ry a—&. (35)
If g(=, &) satisfies the backward equation
3 — AL (36)
with initial condition
9(0,8) = G(§) (37)
then [7]
g(1,8(0)) = (G(§(r)))- (38)

If G(§) is bounded and continuous, the weak convergence
of ¢(r/e&) to £(r) implies [5, p. 2437 that

(G(E(eD)) — (@(4(H)))—0

as e — 0, for 0 < &t < 7.

It is a straightforward matter to calculate the quantities
K;(¢) and a; () corresponding to systems (24) and
(25), so we omit the details. The integrals over s in (33)
and (34) are readily carried out, and it is found that

(39)

K, = u(a® — 1)*/2¢ Ky=2 (40)
Gn=u(e — D G = p(e+ DY (41)
and
=0 dy=0 (42)
where, in terms of the correlation function (7),
w— iy = f ") & (43)
0
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In deriving these results we have made use of (3), (5),
and (6). Note that, from (7) and (12),

2= [ [eore) + ()]s =5 (40
0

We remark that, strictly speaking, Khas'minskii’s
theorem is not applicable to systems (24) and (25),
because of the singularity in (25) at ¢ = 0. However,
one may let p = u -+ 4 in (19), and apply the theorem to
the equations satisfied by % and v. It may be verified that
the corresponding infinitesimal generator is that obtained
by making the corresponding transformation of variables
in (35). In the (o, ¢) variables, (36) becomes, from
(40)-(42),

a 14 92 d
_q=§<1_g2)2<__9+_fz)+2y_q

ar gdo  do? o
p(l + o%)* 9%
—_— . (4
R EYE (45)
If we now let
—1
2 = —
o 1 (46)
then (45) becomes
149 9 R 6g] dg wzt 9%y
S =y — - 1) == -+ —-—_, (4
291 “ax[x Vorl VP T o e WD
We are interested only in ‘
1= lpf=1—o = — (43)
pIm= 7= -+ 1

from (23) and (46). Then G is a function of z alone and,
from (37) and (47), ¢ is independent of . From (20),
(38), (39), and (48),

G((1)) ~g(e, 1).

Since | p | < 1 from (21), it follows that z > 1.

The solution of (47), with initial value given by (48),
has been obtained previously [3], [6], [8], [9] in the
calculation of the mean power transmitted through a
randomly stratified dielectric slab. We comment that
in the slab problem the equation corresponding to (47)
contains an additional term [97], which is a constant
multiple of d%/d¢*. From (22), (48), and (49), with

(49)

s = 2¢ul = &L (50)
from (44), it follows that [87, [9]
4 @ e dp
2N A~ —— psi4 -, ki
R \/re ./(; cosh (+/s0) (51)

There is an unfortunate misprint in Papanicolaou’s
result (the exponential factor in front of the integral
in [6, eq. (3.14) 7] should be as in [6, eq. (3.10)]).

We will discuss the result in (51) in the next section, but
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now turn to the case considered by Marcuse [1] in which

| @(0) |* = 1. Then, from (21),
1
a(t) P = —————. 52
O T on )
The corresponding initial value of ¢ is now
g(0,2) = G(z) = 3(1 + z). (53)

Since G(z) is now unbounded, (39) does not necessarily
follow. However, the solution of (47), subject to the
initial econdition (53), is readily found to be

g(r, 2) = (1 + wet). (54)
Thus from (48), (49), and (52)—(54),
(la(®) ) ~ 31 + erér), (55)

This agrees with (14), in view of (10) and (44).

IV. ComparIsoN oF REsULTS

The quantity (| T [2) is the expected value of the output
power when the input power is unity. For small ¢ the
lowest order approximation to {| T [} is given by (51),
where s = L = 0(1), and é is given by (12). The ex-
pression in (51) has been calculated numerically [37],
(6], [8], [9], and it is depicted graphically in Fig. 1.
The corresponding quantity according to Marcuse’s
coupled power equations is given, from (17), by

1
(1+5s)

and is also depicted in Fig. 1. It is seen that the two are
quite close, so long as the expected output power exceeds
half the input power, but that past that point (s > 1)
the curves diverge, considerably so for large s.

Marcuse [17] carried out some computer simulated ex-
periments, in which he considered N sections of guide
of equal length D, so that L. = ND. Within each section
he took the coupling coefficient ¢ to be ==«, with x constant,
but the signs chosen at random. He obtained the average
output power P,(L), corresponding to unit input power,
by averaging over 10 such random waveguides. For
simplicity he assumed that 8, = 8 = 8. and gave numerical
results in the case 8D = =/4. We may take ¢ = «/B.
Then, from [1, eq. (28) ], since cos 28D = 0, we have

Ll X (oY
2 8r*\ B

Marcuse [1] gives the experimental values of P,(L)
in the case N = 500 for three values of «/8. For 2z«/8 = 1,
which corresponds to s = 6.33, he finds that P,(L) =
0.0496. This point is indicated by a triangle in Fig. 1,
and it is seen that it lies quite close to the (| T |?) curve.
The other two values of «/B correspond to s = 0.063 and
s = 0.57, and the corresponding values of P,(L) lie close
to both the (| 7' [?) and W,(0) curves. Marcuse [1] also
gives experimental values of P,(L) in the case N = 100

Wa(0) =

(56)

(57)
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for four values of «/B. Three of these values correspond
to s < 1.3, and the corresponding values of P,(L) lie
close to both the (| T [?) and W.(0) curves. The fourth
value of 2r«/8 is 3 (for which e is not very small), which
corresponds to s = 11.4, and lies outside the range of s
in Fig. 1.

Since the above experimental values give only one -

comparison point in the region in which W,(0) and
(| T |?) are not close, Marcuse [10], at the request of the
author, carried out some more computer simulated ex-
periments in the case N = 500. The additional points are
indicated by circles in Fig. 1. The values for s = 8.37 and
s = 9.12 were obtained by averaging over 40 waveguides,
rather than 10, because of the large scatter for these values
of s. The experimental values tend to confirm the validity
of the asymptotic value (| T'|*) of the average output
power, given by (51), subject to (12) and (50). We
emphasize that the asymptotic result holds for quite
general weak zero-mean wide sense stationary coupling.

Also depicted in Fig. 1 is the quantity (| T [2)™.
From (21) and (22), note that | T |2 is the value of the
input power | a(L) [, when the output power | a(0) |2
is unity. From (50), (52), and (55), it follows that

(T[2)yt= REWSE

Although (| T [2)~! has the same initial slope as { T |?),

(58)
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it is seen that it decreases very much more rapidly with
increasing s.
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Short Papers

Ridged Circular Waveguide

YIH SHIAU anp RICHARD F. H. YANG, rELLOW, IEEE

Abstract—Characteristics of wave propagation inside a ridged
circular waveguide are studied. The waveguide is a hollow, con-
ducting circular cylinder with a pair of semicircular conducting
ridges diametrically attached to its inside wall. Results of a per-
turbation analysis suggest that in this device a lower attenuation
and a wider bandwidth than those of a conventional circular wave-
guide can be achieved. Certain numerical results are graphically
presented.

INTRODUCTION

It has been found experimentally that, in a seam-weld circular
waveguide, the polarization of the dominant TE;, wave or the orien-
tation of the line joining the two E, maxima wanders, and the wave
has a great tendency to orient its F, maximum along the seam
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ridges [1]. Further experimentation indicated that this tendency
was pronounced for a thick seam or with a seam intended inward
to form a semicircular ridge. In this study, an analysis is made of the
characteristic of wave propagation in a hollow, conducting circular
cylinder with a pair of semicircular conducting longitudinal ridges
diametrically attached to its inside wall.

To solve this problem as an exact boundary-value problem, the
process is long and quite complicated. Instead, a formulation based
on perturbation theory is used. The result is expected to be quite
good for small ridges with smooth cross sections.

Cutorr FrREQUENCY

Let us consider a ridged circular waveguide with its longitudinal
axis in the z direction of a cylindrical coordinate system. The sym-
metric ridge-pair assumed to have a semicircular cross section is
shown in Fig. 1, where 6 is defined as the angle between the longitu-
dinal plane bisecting the ridge-pair (ridge-pair plane) and the
longitudinal plane containing the two E, maxima (polarization).

The ridged circular waveguide may be considered as a smooth
waveguide with its boundary wall perturbed by a symmetric ridge-
pair along the longitudinal direction. It is well known that the time
average of stored magnetic and electric energies are equal in a wave-
guide at cutoff frequency. A small deformation in the waveguide
wall will cause an unbalance in these energies. Therefore, the cutoff
frequency will have to shift by an amouut necessary to reequalize



