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Average Output P~wer of an Incident Wave

Randomly Coupled to a Reflected Wave

JOHN A. MORRISON

Abstract—Two waves traveling in opposite directions in a Iossless

waveguide, which are coupled by a random coupling function, are

considered. It is assumed that no power is allowed to enter the

reflected wave at the output end of the guide. The asymptotic value

of the expected output power in the incident wave, when the inp’ut

power is prescribed, is calculated in the limit of weak coupiing and

a long guide. The result is compared with that predicted by Marcuse

on the basis of coupled power equations. It is found that the two

results are quite close, so long as the expected output power is,

&eater th?n half the input power, but past that point Marcuse’s

approximation to the asymptotic value becomes increasingly poorer

as the waveguide length increases: Some computer simulated re-

sults obtained by Marcuse tend to confirm the ~alidlty of the

asymptotic value of the expected output power.

I. INTRODUCTION

I N A RECENT PAPER, Marcuse [1] has considered

the problem of two waves traveling in opposite direc-

tions that are coupled by a random coupling function.

He derived equations for the average powers in the two

waves from the coupled wave equations, making use of

perturbation approximations, and some intuitive assump-

tions, it being assumed that the coupling is sufficiently

weak. He found that the form of the coupled power

equations depends on the boundary conditions imposed.

One set of equations describes the situation in which the

output amplitude of the incident wave is prescribed, while

no power is allowed to enter the reflected wave at the out-

put end. Another set of equations describes the situation

in which the input amplitude of the incident wave is pre-

scribed, while again no power is allowed to enter the re-

flected wave at the output end.

The former case, in which the amplitudes of both

waves are prescribed at the output end, is simpler. The

coupled power equations derived by Marcuse agree with

the kinetic power equations derived by Papanicolaou [2],

in the case of weak coupling and a long guide, using a

method developed by Papanicolaou and Keller [3]. In the

latter case, in which the amplitudes of the two waves are

prescribed at opposite ends of the guide, the kinetic power

equations derived by Papanicolaou are no longer applic-

able.
In this paper we investigate the validity of the coupled

power equations derived by Marcuse in’ the latter case, in

so far as they’ predict the expected value of the output

power when the input power is unity. Specifically, we

apply a limit theorem due to Khas’rninskii [4] in order to
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Fig. 1. Average powers (] 2’ 1!) (asymptotic) and W.(0) (approxi-

1
mate), and ( I 2’ ‘z )–1 (asymptotic), versus normalized waveguide
length s. Compu er simulated results are mdlcated by mcles and
by a triangle.

calculate the asymptotic value of the expected output

power, in the limit of weak coupling and a long guide. The

results are discussed in detail in Section IV, and are de-

picted graphically in Fig. 1. The quantity W.(0) is the

expected value of the output power predicted by Marcuse

[1], while (1 T ]’) is the asymptotic value. The parameter

s is an appropriate normalization of the waveguide length.

It is seen that W=(0) is quite close to (1 T [2), so long as it

exceeds half the input power, but past that point the ap-

proximation to the asymptotic value becomes increasingly

poor, as the waveguide length increases. Also depicted in

Fig, 1 is the asymptotic value of (1 T 1-2)-1, which is the

reciprocal of the expected value of the input power, when

the output power is unity.

Comparison is also made with some computer simulated

results obtained by Marcuse [1], and these tend to con-

firm the validity of the asymptotic value of the expected

output power, derived on the basis of the limit theorem.

II. COUPLED WAVE EQUATIONS

Marcuse [1] considers coupled wave equations of the

form

da

E
= i~la — c(t)b

db

dt =
—i@jb — c*(t)a

(1)

(2)

where the propagation constants PI and bz are assumed

to be positive, so that losses in the waveguide are ne-

glected. For convenience, we have replaced Marcuse’s

variable Z, measuring distance along the guide, by (L – t),
where L is the length of the guide. The wave of amplitude
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a travels in the negative t direction with propagation

constant fh, while the wave with amplitude b travels in the

positive tdirection with propagation constant &.

We write the complex coupling coefficient in the form

c(t) = q(t) = C[m(t) + i712(Ql (3)

where e > 0 is a small parameter, so that the coupling

between the waves is weak. The asterisk in (2) denotes

complex conjugate. We assume that c(t) is a zero-mean

wide sense stationary stochastic process, so that

(w(t) ) = o, j = 1,2 (4)

where ( ) denotes ensemble average, and the correlation

functions are

(v,(ov-k(~) ) = r,k(t – s), j,k = 1,2. (5)

Note that

‘jk( – ~) = rk, ({), j,k = 1,2 (6)

and that

r(f) = (~(s +~)q*(s)) = (q(s) T)*(s — ~)) = ?’*(— ~).
(7)

Marcuse [1] assumes that r ( – {) = r(~), which implies

that r(~) is real and that I’IZ (~) = I’ZI (~), but we do not
impose this restriction here.

It follows from (1) and (2) that

d
~[1 U(O 1’– I b(t) 121= o (8)

which expresses the conservation of power. It is assumed

that the input power is in the wave of amplitude a, and

that no power enters the reflected wave at t = O, the

output end, so that

b(0) = O. (9)

Marcuse [1] derived coupled power equations for the

average powers in the two waves

Wa(t) = ([a(t) ]2), W,(t) = (1 b(t) )2) (10)

in two different cases. In one case he assumed that the

output amplitude of the incident wave is prescribed.

In view of (9), there is then an initial value problem

for the system (1) and (2).

Kinetic power equations governing the power transfer

between randomly coupled modes, subject to nonsto-

chastic initial conditions, have been obtained by Pap-

anicolaou [2] in the case of weak coupling and long

guides, using a method developed earlier by him and

Keller [3]. For the particular case of systems (1) and

(2), these equations take the form

(11)

where

,Ca
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and

Y= Pl+b2. (13)

In (12), r(t) is given by (7), and it is known [.5] that

6 2 0. Equation (11) is asymptotically valid for t = ~/e2,

where O < r < TO,and TO> 0 is fixed, in the limit E + O.

They are consktent with the coupled power equations

obtained by Marcuse [1] k the case Y( — {) = r({).

The solution of (11), subject to the initial conditions

W.(O) = 1, Wb(()) = () is

W.(t) = *(e2’2J’+1)

Wb(t) = +(e 2#6t_l). (14)

In the other case considered by Marcuse [1] the input

amplitude of the incident wave is prescribed, say a (L) = 1,

so that, in view of (9), there is then a two-point boundary

value problem for systems (1) and (2), rather than an

initial value problem. The kinetic power equations of

Papanicolaou [2] are not applicable in thk case. How-

ever, Marcuse [1] does derive some coupled power

equations with the help of some intuitive assumptions,

and they take the form

dWa dwb
— = a(wa — Wb) = —

dt dt
(15)

where 6 is given by (12), with r(~) = T( — ~) given by

(7). The solution of (15) subject to the boundary con-

ditions WG(L) = 1, Wb(()) = O k

w.(t) =
(1 + at)

w,(t) =
e%

(1 + e26L) (1 + ALL) “ ’16)

The expected value of the output power is then

w.(o) = 1
(1 + 6%L) “

(17)

The main purpose of this paper is to investigate the

validity of (17) in the case O < L 5 10/c2,where e is small.

We do this with the help of a limit theorem due to Khas’-

minskii [4], which is discussed in the next section. How-

ever, we first reformulate the problem in a manner

analogous to that adopted by Papanicolaou [6] in his

investigation of the mean power transmitted by an elec-

tromagnetic wave normally incident on a randomly

stratified dielectric slab. Thus we let

b(t)
p(t) = ei~t —

a(t)
(18)

where y is given by (13). Then, from (1) – (3), it follows

that

dp

z
= e[e–i~tq (t)p2 —

From (9) the initial condition is

p(o) = o.

ei~tn*(t)]. (19)

(20)
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From (8), (9), and (18) it follows that

(l–[p(t)[’)=w. (21)

Hence, if a(L) = 1, the output power I a(0) 12 is

IT12= (1– lp(L) p). (22)

Note also from (21) that in the other case considered

by Marcuse, in which [ a(0) /’ = 1, I P(t) I determines

I a(t) 1. Thus, for our purposes, it suffices to consider

(19), subject to the initial condition (20). Although

(19) differs from the Riccati equation that arises in the

slab problem [6], we are able to make use of the main

result for that problem, as will be seen in the next section.

III. APPLICATION OF A LIMIT THEOREM

For the application of the limit theorem of Khas’-

minskii [4], it is necessary to separate (19) into real and

imaginary parts. Thus, letting

p(t) = u(t) e@’(t) (23)

it is found, using (3), that

du
— = C(U2– l)[ql(t) Cos (4 – -d) – T?2(Q sin (* – 701
dt

(24)

+ 7?2(~) CIX3 (~ – Tt) ]. (25)

The limit theorem applies to vector differential equations

of the form

CLJ’j

— = I’j( *,t)
dt

where Fj( ~,t) is a random function of

(Fj(llJ,t) ) = o.

(26)

t, with

(27)

It is supposed that the initial value ~(0) is nonstochastic.

In view of (4), systems (24) and (25) are of the ap-

propriate form, with

t = (41,*2) = (u,+). (28)

Now define

Kj( *,.s,t)= (;: (tI/,s) Fk(~,t)) (29)

where it is understood that repeated indices are summed,

and

ai~(~,s,t) = (Fi( ~,.s) Fk(dI,t) ).

For systems (24) and (25), it follows from (5)

(30)

that

(31)

and ‘

(

21r
ajk ~js + — ,

)
t + ~ = ajfi(+,s,t). (32)

‘Y

In view of (31) and (32), Khas’minskii’s definitions of

l?j and cii~ become [4]

2T17 m

~jk(+) = T
/127r o –.

ajk(dr,s,s – ~) d~ ds. (34)

We assume that q(t), as given by (3), is a bounded

stochastic process satisfying a certain strong mixing

condition. The reader is referred to Khas’minskii’s paper

for a precise statement of this condition. Let dr(t)be the

solution of (26) satisfying ~(0) = ~0. Then the limit

theorem states that on the interval O s r < TO,where TO

is an arbitrary positive number, the process ~ (~/e2)

converges weakly as e -+ O to a Markov process ~(7),

which is continuous with probability 1 and whose in-

finitesimal generator is given by

A == ;ajk(g)~ + l?j(!j) +j .

c%?’%

If g (r, fj) satisfies the backward equation

~ = A[g]

(35)

(36)

with initial condition

g(O,$) = G(g) (37)

then [7]

g(r,~(0)) = (G(~(~)) ). (38)

If G(g) is bounded and continuous, the weak convergence

of ~ (r/cz) to ~(~) implies [5, p. 243] that

(G(~(~20) ) – (G(4(0) ) +0 (39)

ase-+O, for05e2t<ro.

It is a straightforward matter to calculate the quantities

Fj( @ and ~j~ ( t) corresponding to systems (24) and

(25), so we omit the details. The integrals over s in (33)

and (34) are readily carried out, and it is found that

l?~ = P(u2 – 1)2/2a R2 = 2V (40)

& = #(a2 _ 1)2 a2.2 = p(uz + 1)2/a2 (41)

and

au=o a21=o (42)

where, in terms of the correlation function (7),

/

m

p—iv= e-~~r(f) df. (43)
o
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Inderiving these results wehavemade use of (3), (5),

and (6). Note that, from (7) and (12),

/

m

2p = [e-’~~r(f) + e’~~r*(f) ] df = 6. (44)

o

We remark that, strictly speaking, Khas’minskii’s

theorem is not applicable to systems (24) and (25),

because of the singularity in (25) at a = O. However,

one may let p = u + iv in (19), and apply the theorem to

the equations satisfied by u and v. It maybe verified that

the corresponding infinitesimal generator is that obtained

by making the corresponding transformation of variables

in (35). In the (u, ~) variables, (36) becomes,

(40)-(42),

ag

z ‘W”2)2(%+29+2”%

If we now let

x—1~2=_
X+l

then (45) becomes

We are interested only in

2
l–lpl’=l–u~=—

X+l

from

(45)

(46)

(47)

(48)

from (23) and (46). Then G is a function of z alone and,

from (37) and (47), g is independent of +. From (20),

(38), (39), and (48),

(G(~(t) )) N g(~2t, 1). (49)

Since I p I ~ 1 from (21), it follows that ~ ~ 1.

The solution of (47), with initial value given by (48),

has been obtained previously [3], [6], [8], [9] in the

calculation of the mean power transmitted through a

randomly stratified dielectric slab. We comment that

in the slab problem the equation corresponding to (47)

contains an additional term [9], which is a constant

multiple of d2g/d~2. From (22), (48), and (49), with

s = 2e2pL = e2?iL (50)

from (44), it follows that [8], [9]

(1T 12)~ j= e-’l’ /“ ‘2‘-”’~ (51)
%- 0 cosh (<s V) “

There is an unfortunate misprint in Papanicolaou’s

result (the exponential factor in front of the integral

in [6, eq. (3.14)] should be as in [6, eq. (3.10)]).

We will discuss the result in (51) in the next section, but
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now turn to the case considered by Marcuse [1] in which

I a(0) 12 = 1. Then, from (21),

1

‘ a(t) ‘2 = (1 – I p(t) [’) “
(52)

The corresponding initial value of g is now

g(O, z) = G(z) = ;(1 + z). (53)

Since G(z) is now unbounded, (39) does not necessarily

follow. However, the solution of (47), subject to the

initial condition (53 ), is readily found to be

g(~, z) = ;(1 + ze’~’). (54)

Thus from (48), (49), and (52)-(54),

(1a(t) ]2) - ;(1 + e“2Pt). (55)

This agrees with (14), in view of (10) and (44).

IV. COMPARISON OF RESULTS

The quantity (1 T [2) is the expected value of the output

power when the input power is unity. For small e the

lowest order approximation to (1 T /2) is given by (51),

where .s = e21sL= O(1), and ~ is given by (12). The ex-

pression in (51) has been calculated numerically [3],

[6], [8], [9], and it is depicted graphically in Fig. 1.

The corresponding quantity according to Marcuse’s

coupled power equations is given, from (17), by

1

‘a(o) = (1+ s)
(56)

and is also depicted in Fig. 1. It is seen that the two are

quite close, so long as the expected output power exceeds

half the input power, but that past that point (s > 1)

the curves diverge, considerably so for large s.

Marcuse [1] carried out some computer simulated ex-

periments, in which he considered N sections of guide

of equal length D, so that L = ND. Within each section

he took the coupling coefficient c to be &K, with K constant,

but the signs chosen at random. He obtained the average

output power P. (L), corresponding to unit input power,

by averaging over 10 such random waveguides. For

simplicity he assumed that B1 = 6 = pz and gave numerical

results in the case ~D = r/4. We may take c = K/(3.

Then, from [1, eq. ( 28)], since cos 2~D = O, we have

(57)

Marcuse [1] gives the experimental values of P.(L)
in the case N = 500 for three values of K/~. For 27 K/@ = 1,

which corresponds to s = 6.33, he finds that Pa(L) =
0.0496. This point is indicated by a triangle in Fig. 1,

and it is seen that it lies quite close to the (1 T 12)curve.

The other two values of K/~ correspond to s = 0.063 and

s = 0.57, and the corresponding values of Pa(L) lie close

to both the (1 T 1’) and W.(0) curves. Marcuse [1] also

gives experimental values of P.(L) in the case N = 100
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for four values of K/P. Three of these values correspond

to s < 1.3, and the corresponding values of P.(L) lie

close to both the (/ !f’Iz) and ~~(0) curves. The fourth

VahIe Of %K/@i S 3 (for which ~is not very small), which

corresponds to s = 11.4, and lies outside the range of s

in Fig. 1.

Since the above experimental values give only one

comparison point ‘in the region in which W.(0) and

(1 T 1’) are not close, Marcuse [10], at the request of the

author, carried out some more computer simulated ex-

periments in the case N = 500. The additional points are

indicated by circles in Fig. 1. The values for s = 8.37 and

s = 9.12 were obtained by averaging over 40 waveguides,

rather than 10, because of the large scatter for these values

of .s. The experimental values tend to confirm the validity

of the asymptotic value (I T ]2) of the average output

power, given by (51), subject to (12) and (50). We

emphasize that the asymptotic result holds for quite

general weak zero-mean wide sense stationary coupling.

Also depicted in Fig. 1 is the quantity (1 T 1-2)-l.
From (21) and (22), note that I T ]–2 is the value of the

input power I a(L) 12, when the output power I a(0) 12

is unity. From (50), (52), and (55), it follows that

~] T [-2)-1 = 2

(1 + e2’) ‘
(58)

Although. (1 T [-2)-’ has the same initial slope as (1 T 12),

it is seen that it decreases

increasing s.
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very much more rapidly with
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Short Papers

Ridged Circular Waveguide

YIH SHIAU AND RICHARD F. H. YANG,

A&stract—Characteristics of wave propagation

FELLow, IEEE

inside a ridged

circular waveguide are studied. The waveguide is a hollow, con-

ducting circular cylinder with a pair of semicircular conducting

ridges diametrically attached to its inside wall. Results of a per-

turbation analysis suggest that in this device a lower attenuation

and a wider bandwidth than those of a conventional circular wave-

guide can be achieved. Certain numerical results are graphically

presented.

INTRODUCTION

lt has been found experimentally that, in a seam-weld circular
waveguide, the polarization of the dominant TEII wave or the orien-
tation of the line joining the two E. maxima wanders, and the wave
has a great tendency to orient its ,?7, maximum along the seam
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ridges [1]. Further experimentation indicated that this tendency
was pronounced for a thick seam or with a seam intended inward
to forma semicircular ridge. In this study, an analysis is made of the
characteristic of wave propagation in a hollow, conducting circular
cylinder with a pair of semicircular conducting longitudinal ridges

diametrically attached to its inside wall.

To solve this problem as an exact boundary-value problem, the
process is long and quite complicated. Instead, a formulation based

on perturbation theory is used. The result is expected to be quite
good for small ridges with smooth cross sections.

CUTOFF FREQUENCY

Let us consider a ridged circular waveguide with its longitudinal
axis in the z direction of a cylindrical coordinate system. The sym-
metric ridge-pair assumed to have a semicircular cross section is
shown in Fig. 1, where 0 is defined as the angle between the longitu-
dinal plane bisecting the ridge-pair (ridge-pair plane) and the
longitudinal plane containing the two E, maxima (polarization).

The ridged circular waveguide may be considered as a smooth
waveguide with its boundary wall perturbed by a symmetric ridge-
pair along the longitudinal direction. It is well known that the time

average of stored magnetic and electric energies are equal in a wave-
guide at cutoff frequency. A small deformation in the waveguide

wall will cause an unbalance in these energies. Therefore, the cutoff
frequency will have to shift by an amouut necessary to reequalize


